Some extremal results for $C_{2k+1}$-free graphs
小
中
大
发布日期:2025-10-21 18:37:11
Erd\H{o}s and Simonovits (1973) proposed the following problem: For an integer $r\geq 2$ and a family $\mathcal{F}$ of non-bipartite graphs, what is the maximum of minimum degree $\delta(G)$ among all $n$-vertex $\mathcal{F}$-free graphs $G$ with chromatic number at least $r$? The edge and spectral counterpart of this problem is to determine the maximum size and spectral radius $\lambda (G)$ among all $n$-vertex $\mathcal{F}$-free graphs $G$ with chromatic number at least $r$. In this talk, we will first introduce some relevant background and then present some of our extremal results for $C_{2k+1}$-free graphs with high chromatic number.
邹澜涛,湖南大学博士,导师是彭岳建教授。主要研究方向是极值图论。目前,在《Journal of Graph Theory》、《Discrete Mathematics》等期刊上发表论文多篇。
学术活动
- 2025/10/26
Some extremal results for $C_{2k+1}$-free graphs
- 2025/10/23
Volume growth and Liouville theorems on weighted graphs
- 2025/10/27
大语言模型的语言学基础(国内访学归来报告)
- 2025/10/28
周末专家河北行:人工智能赋能教育数字化转型:方法、策略与案例
- 2025/10/23
Physics of narrow near-threshold exotic resonances
- 2025/10/23
“大外真知讲坛”第27讲 人工智能赋能外语教学:实际问题与解决方案


