Ramsey and (bipartite) Gallai-Ramsey numbers for some families of graphs
小
中
大
发布日期:2025-09-25 15:24:50
Given two graphs G and H, the Ramsey number R(G,H) is defined as the minimum number of vertices n such that every red-blue edge-coloring of the complete graph K_n contains either a red copy of G or a blue copy of H. If G is isomorphic to H, then we write R(G) for short. For any positive integer k, the Gallai-Ramsey number gr_k(G:H) is the minimum number of vertices n such that any exact k-edge coloring of K_n contains either a rainbow copy of G or a monochromatic copy of H. The bipartite Gallai-Ramsey number bgr_k(G:H) is the minimum number of vertices n such that for every N greater than or equal to n, any exact k-edge coloring of the complete bipartite graph K_{N,N} contains a rainbow copy of G or a monochromatic copy of H. In this talk, we describe the structures of a complete bipartite graph K_{n,n} without small rainbow subgraphs and determine the Ramsey and bipartite Gallai-Ramsey numbers for some families of graphs.
魏美芹,上海海事大学理学院讲师,博士毕业于南开大学组合数学中心,师从李学良教授,2023-2024学年于华东师范大学数学科学学院国内访学,师从吕长虹教授。主要从事图的拉姆齐数和加莱-拉姆齐数以及图能量极值问题的研究,主持国家自然科学基金青年基金项目一项,获得上海市启明星(扬帆专项),发表SCI论文十余篇。
学术活动


