Covering systems and periodic arithmetical maps
小
中
大
发布日期:2025-09-17 09:35:33
If the ring Z of integers is the union of finitely many residue classes a1(mod n1), . . . , ak(mod nk), then the system A = {as(mod ns)}k s=1 is called a cover of Z or a covering system. There are many problems and results on this topic initiated by Paul Erd ̈os. In this talk we give a survey of covering systems and covers of groups by left cosets, and also introduce the algebraic theory of periodic arithmetical maps motivated by the speaker’s research on covering systems. The talk is related to number theory, combinatorics, algebraic structures and special functions.
孙智伟,现为南京大学数学学院教授、博士生导师, 中国数学会组合与图论专业委员会副主任。其研究方向为数论与组合数学。
他获过多项荣誉与奖励,包括国务院政府特殊津贴、教育部首届青年教师奖、江苏省科技进步二等奖。
他在数论与组合、代数的交叉领域有许多创新成果, 迄今已在《Trans. Amer. Math. Soc.》等数学期刊上发表了两百多篇学术论文,还著有《数论与组合中的新猜想》、《Fibonacci数与Hilbert第十问题》等书。在限定未知数个数的整数环上Hilbert第十问题方面,他保持着世界最佳记录。他还提出了许多原创性数学猜想,引起了国际同行的广泛关注与研究。
学术活动
- 2025/09/21
Covering systems and periodic arithmetical maps
- 2025/09/18
Geometric properties of solutions to elliptic PDE’s in Gauss space and Related Brunn-Minkowski type inequalities
- 2025/09/17
Chromatic profile of C_{2k+1}-free graphs
- 2025/09/19
简谈当代马克思主义与科学和民主的发展规律
- 2025/09/17
学习贯彻习近平法治思想,推动新时代法学教育高质量发展
- 2025/09/21
文苑大讲堂2025年第28讲: “否定性作为生活方式” —— 德勒兹的教育哲学与AI时代的数字素养 (周末专家河北行)


