Geometric properties of solutions to elliptic PDE’s in Gauss space and Related Brunn-Minkowski type inequalities
小
中
大
发布日期:2025-09-17 09:34:09
It is well known that several variational functionals verify Brunn- Minkowski type inequalities, such as: Torsional rigidity; First Dirichlet eigenvalue of the Laplace; p-Capacity... And their solutions of the corresponding boundary value problem (PDE's+boundary conditions), satisfy specific concavity properties. In this talk, I will present my recent work about the first Dirichlet eigenvalue problem to the weighted p-Laplace operator in Florence. (a joint work with Andrea Colesanti and Paolo Salani).
覃蕾,湖南大学数学学院博士生。主要从事于凸几何与偏微分方程方向的研究,主要聚焦于凸几何中的Minkowski问题研究以及椭圆型偏微分方程解的凹凸性及相应的Brunn-Minkowski不等式研究。其研究成果已在Adv. Math、Proc.AMS等杂志发表。
学术活动
- 2025/09/18
Geometric properties of solutions to elliptic PDE’s in Gauss space and Related Brunn-Minkowski type inequalities
- 2025/09/17
Chromatic profile of C_{2k+1}-free graphs
- 2025/09/19
简谈当代马克思主义与科学和民主的发展规律
- 2025/09/17
学习贯彻习近平法治思想,推动新时代法学教育高质量发展
- 2025/09/21
文苑大讲堂2025年第28讲: “否定性作为生活方式” —— 德勒兹的教育哲学与AI时代的数字素养 (周末专家河北行)
- 2025/09/20
教育科研论文的评价标准与写作策略


