Banach Spaces with the Ball Covering Property
小
中
大
发布日期:2025-07-14 22:36:52
A Banach space is said to have the ball coveringproperty if its unit sphere can be covered by countably many open balls off theorigin. The ball covering property is a property that has close relationshipswith the topological properties and geometric properties of Banach spaces. Inthis talk, we will give a review of the historical literature and present somerecent advances on this topic. Open problems will be proposed, and approacheswill be discussed.
郑本拓,获美国Texas A&MUniversity数学博士学位,是美国孟菲斯大学数学系教授,主要研究方向为Banach空间理论及其应用,郑本拓教授在Banach空间理论领域获得了诸多杰出的成果。例如:解决了著名的具有无条件基Banach空间的子空间的刻画问题,回答了泛函分析国际顶级专家H.Rosenthal提出的一个三十多年的公开问题;运用Banach空间理论,对调和分析领域关于Lp空间函数平移的公开问题给出否定回答;完全证明弱有界逼近性质和强逼近性质对于任意Banach空间的等价性,解决了逼近性质资深专家Oia的猜想。郑本拓教授国际著名数学期刊Duke Math Journal,Transactions of AMS以及Journal of Functional Analysis等发表论文多篇。
学术活动
- 2025/08/08
Veni, Sensi, Vici: Touch, on the Robot Physical Intelligence
- 2025/08/09
豆科植物调控根瘤菌侵染的分子机制研究
- 2025/08/04
第19次JSSC前沿学术沙龙
- 2025/08/03
Advancements in Weighted Incidence Matrix Labelling Methods for Graph Spectral Theory
- 2025/07/23
Оn maximal cliques in Paley graphs, generalised Paley graphs and Peisert graphs
- 2025/07/23
Construction of divisible design graphs using affine designs


