The Weyl-von Neumann theorem and Hausdorff dimension for normal operators in semifinite factors
小
中
大
发布日期:2025-04-25 16:24:56
Let M be a separable properly infinite semifinite factor. We show that every normal operator T in M is an arbitrarily small max{||·||, ||·||_p}-norm perturbation of a diagonal operator whenever p>dimH(σ_e(T)), where σ_e(T) is the essential spectrum of T and dimH(F) denotes the Hausdorff dimension of a compact set F in the complex plane. On the other hand, if dimH(F)>1, then there exists a normal operator T in M with σ_e(T)=F such that T is not a max{||·||,||·||_p}-norm perturbation of a diagonal operator for any p<dimH(F). Furthermore, we establish an analogous result for unitarily invariant norms when replacing the Hausdorff dimension with the lower Minkowski dimension.
马明辉,大连理工大学博士后,研究方向为算子理论与算子代数。
学术活动
- 2025/04/29
关于科研的感想
- 2025/04/29
Fully nontrivial solutions for the coupled nonlinear Maxwell system
- 2025/04/29
The Weyl-von Neumann theorem and Hausdorff dimension for normal operators in semifinite factors
- 2025/04/29
化学与材料科学学院人才招聘暨青年学者论坛
- 2025/04/26
首届全国中共党史党建学学科研究生学术论坛
- 2025/04/28
PEM电解水制氢催化剂与膜电极技术:从材料创新到产业化突破


