The Weyl-von Neumann theorem and Hausdorff dimension for normal operators in semifinite factors

发布日期:2025-04-25 16:24:56

主 讲 人 :马明辉    
活动时间:2025-04-29 09:00
地      点 :数学科学学院D203报告厅
主办单位:数学科学学院
讲座内容:

Let M be a separable properly infinite semifinite factor. We show that every normal operator T in M is an arbitrarily small max{||·||, ||·||_p}-norm perturbation of a diagonal operator whenever p>dimH(σ_e(T)), where σ_e(T) is the essential spectrum of T and dimH(F) denotes the Hausdorff dimension of a compact set F in the complex plane. On the other hand, if dimH(F)>1, then there exists a normal operator T in M with σ_e(T)=F such that T is not a max{||·||,||·||_p}-norm perturbation of a diagonal operator for any p<dimH(F). Furthermore, we establish an analogous result for unitarily invariant norms when replacing the Hausdorff dimension with the lower Minkowski dimension.


主讲人介绍:

马明辉,大连理工大学博士后,研究方向为算子理论与算子代数。