Various ways to obtain a polynomial equation with one catalytic variable

发布日期:2025-12-16 08:17:57

主 讲 人 :许睿捷    助理研究员
活动时间:2025-12-19 15:00:00
地      点 :数学科学学院D203报告厅
主办单位:数学科学学院
讲座内容:

In combinatorial literatures, discrete difference equations are always called polynomial equation with one catalytic variable. Under some mild conditions, it is possible to find a unique formal series solution. The solving strategy was first proposed in 2006 by MIREILLE BOUSQUET-MÉLOU and many problems was solved in this framework.

In this talk, I would like to introduce different ways to achieve a polynomial equation with one catalytic variable. I will introduce the ideas without the giving full proofs. I pick examples from different literatures by MIREILLE BOUSQUET-MÉLOU, ANDREW ELVEY PRICE, Kilian Raschel and also my recent work. The examples incudes lattice walks in different domains and some graph enumeration problems.


主讲人介绍:

许睿捷是北京雁栖湖应用数学研究院的助理研究员。博士毕业于墨尔本大学,随后在北京雁栖湖应用数学研究院做博后,助理研究员。主要研究是离散的网格游走模型。主要使用的方法是代数组合中的kernel method,同时也会涉及到用一些椭圆函数和反常积分的方法求解。