Ramsey number and bipartite Ramsey number of double stars
小
中
大
发布日期:2025-07-03 09:30:26
For positive integers n,m, the double star S(n,m) is the graph consisting of the disjoint union of two stars K_{1,n} and K_{1,m} together with an edge joining their centers. Finding monochromatic copies of double stars in edge-colored complete graph and complete bipartite graphs has attracted much attention. The k-color Ramsey number and bipartite Ramsey number of S(n,m) are denoted by r(S(n,m);k) and r_{bip}(S(n,m);k), respectively. To the best of our knowledge, little is known on the exact value of r(S(n,m);k) and r_{bip}(S(n,m);k) when k\ge 3. Using a folklore double counting argument in set system and the edge chromatic number of complete graphs, we prove that if k is odd and n is sufficiently large compared with m and k, then \[r(S(n,m);k)=kn+m+2.\] Applying the Turán argument in the bipartite setting, we prove that if k=2 and n\ge m, or k\ge 3 and n\ge 2m, then \[br(S(n,m);k) = kn + 1.\] In this talk we will discuss the main ideas of our results.
This is joint work with Jake Ruotolo (Harvard University) and Gregory DeCamillis (University of Waterloo).
宋梓霞,美国中佛罗里达大学(University of Central Florida)数学系系主任、教授、博士生导师,主要研究方向为图论。1990–1994年于安徽大学获学士学位,1994–1997年于中国科学技术大学获硕士学位,2000–2004年于美国佐治亚理工学院获算法、组合与优化博士学位,2004–2005年在俄亥俄州立大学从事博士后研究。2005年起任教于中佛罗里达大学,主持美国国家安全局(NSA)和国家科学基金会(NSF)科研项目,并担任NSF评审专家。曾获校优秀教学奖与科研奖。其研究成果发表于 Advances in Mathematics、Journal of Combinatorial Theory, Series B、Combinatorica、SIAM Journal on Discrete Mathematics、Journal of Graph Theory 等图论领域国际权威期刊,现任 Discrete Mathematics 编委(Associate Editor)。
学术活动


